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Two Approaches to Non-Binary Computing 
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• Lowest-level signals in system are 

represented as continuous-valued 

• A voltage level on a single wire 

communicates, in a single transmission 

cycle, e.g., an 8-bit, quantity, e.g., 

interpretable as a probability. 

• In conventional computing, 8 signals, 

each a binary voltage level, have to be 

sent and then combined (decoded) at 

the destination 

Lyric 

• Lowest-level signals are 

represented as binary-valued 

• All represented values, i.e. of: 

• variables 

• relationships between 

variables, e.g., conditional 

probabilities 

are represented as sums of 

binary signals 

Neurithmic 



Sparse Distributed Representation 
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• Every represented entity in the system is represented by a subset of binary 

representational units (RUs) chosen from a much larger set. 

• The subsets can overlap 

• It’s possible to represent similarity of entities by overlap of their codes 

Similar-inputs-to-similar-codes (SISC) property 

 Entities   Representations (codes)  

RU 
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 Entities    Codes   

e.g., Kanerva, Willshaw et al, Palm 
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Realizing SISC via SDR  
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WTA cluster  
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Input A 

The L2 code 
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Any single 
code 

represents 
ALL stored 

codes 



Not Forcing Computation 

Through a Localist Nexus 
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Sparse Coding Layer 

Input Layer  

Localist Layer A 

Subsequent 
Computations 

B C D E F G 

a) b) 

A B C D E F G 

Subsequent Computations 

• Any single code represents ALL stored codes 



Summing Binary Signals 
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• Voltages sum simultaneously 

on terminal. 

• No decoding needed 

Physically Algorithmically 

1 2 3 4 

1 2 3 4 5 6 

0 1 0 1 1 0 

cf. “quantal release” in synaptic transmission 

CMOS node (RU) 

• Involves iterating over RUs and over 

each RU’s set of incoming weights. 

• These are fixed quantities 

•  Constant time complexity 

- For each RU, i 

 - Sum = 0; 

 - For all incoming wts, wji 

  - sumi += wji  aj 

 

- For each RU, i 

 - ai = f(sumi) 
 

 

 

 

- Choose winner 

  (soft max) 1 
20 

1800 
1810 

Set up cumulative  

distribution of ai 

Generate 

rand. num. 

in the range 

WTA cluster  



Three evidence sources combine to select codes 
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• Bottom-up, Horizontal, and Top-down evidence vectors are 

combined to choose which code becomes active. 

Bottom-Up 
(U) Inputs

Top-Down 
(D) InputsHorizontal 

(H) Inputs

L1

L0

L2

1,0M

2,0M



Code Selection Algorithm 
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 
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RU 

1. For each RU, sum its inputs. 

2. Normalize each sum to [0..1] range. 

3. Multiply the three normalized sums, yielding a local degree of support 

(evidence), V. 

4. RU with max V in each cluster wins (1st round). 

5. Compute G, the ave. of the max V’s over all clusters in a coding module.   

6. Modulate the RU activation function, f(V), based on G: 

• As G  0, make activation function more compressive 

• As G  1, make activation function more expansive 

7. For each RU, compute  = f(V)  

8. In each cluster, normalize  ’s to probability measure, . 

9. In each cluster, choose winner as draw from  distribution (2nd round) 

G is a global (to 
coding module) 
measure of the 
familiarity of 
total input to 
the module. 



CSA Example 
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Round 1: Find hard max 

V in each cluster (ties 

broken at random) 

Set expansivity () of 

L1 activation function 

(i.e., of the V-to- 

transform) 

Compute G:  average 

of the max V ’s 

Round 2: Separate draws 

in the Q= 6 mincs (i.e., 

soft max in each cluster) 

yields L1 code, 1  
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CSA 

Example 

(cont’d) 
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-from: Serre, T., et al., A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex, in AI Memo 2005-036. 2005, MIT 

These two units are 

completely disjoint, yet 

they have huge featural 

overlap. 

 

This is true throughout 

the entire model; i.e., 

millions of units 

representing highly 

redundant information. 

Invariant 

Invariant 

Invariant 

Invariant 

Specific 

Specific 

Specific 

Specific 

Also completely disjoint, 

yet also have huge featural 

overlap. 

Also completely disjoint, yet 

also have huge featural 

overlap. 

Localist Hierarchy 
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S1 

S2 

S4 

S3 

C4 

C2 

C3 

C1 

a) b) - Adapted from Serre et al (2005) 

S1 

This view distinguishes 
compositionality from 
distributedness. 

C1 

Localist vs. SDR-based Hierarchical Representations  


